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An Autism Case History to Review the
Systematic Analysis of Large-Scale Data to
Refine the Diagnosis and Treatment of
Neuropsychiatric Disorders
Isaac S. Kohane
ABSTRACT
Analysis of large-scale systems of biomedical data provides a perspective on neuropsychiatric disease that may be
otherwise elusive. Described here is an analysis of three large-scale systems of data from autism spectrum disorder
(ASD) and of ASD research as an exemplar of what might be achieved from study of such data. First is the biomedical
literature that highlights the fact that there are two very successful but quite separate research communities and
findings pertaining to genetics and the molecular biology of ASD. There are those studies positing ASD causes that
are related to immunological dysregulation and those related to disorders of synaptic function and neuronal
connectivity. Second is the emerging use of electronic health record systems and other large clinical databases that
allow the data acquired during the course of care to be used to identify distinct subpopulations, clinical trajectories,
and pathophysiological substructures of ASD. These systems reveal subsets of patients with distinct clinical
trajectories, some of which are immunologically related and others which follow pathologies conventionally thought
of as neurological. The third is genome-wide genomic and transcriptomic analyses which show molecular pathways
that overlap neurological and immunological mechanisms. The convergence of these three large-scale data
perspectives illustrates the scientific leverage that large-scale data analyses can provide in guiding researchers in
an approach to the diagnosis of neuropsychiatric disease that is inclusive and comprehensive.
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Perhaps the branch of medicine most successful in achieving a
precise diagnosis of disease, one directly linked to its cause, has
been that of infectious disease. Only a little over 100 years
passed between the identification of microorganisms as the
causative agents for multiple diseases and the consequent
development of dozens of therapies in immunizations and anti-
biotics that have had a greater impact on mortality and morbidity
than any other medical intervention (1). It is this understanding of
the consequences of cause and precise diagnostic capabilities
that were the main drivers of the recent National Academy of
Sciences report on Precision Medicine: to use multiple compre-
hensive measurement modalities to identify which subgroup of
patients a given patient most resembles and therefore to be able
to both assign a diagnostic label and predict a clinical course in
response to therapeutic intervention. I review here how a system-
atic approach to large-scale data can make some preliminary and
illuminating strides toward a “precision medicine” of neuropsychi-
atric disease. I use the autism spectrum disorders (ASDs) as the
prismatic example of the larger opportunity by illustrating how
this approach reveals two richly productive but largely separate
avenues of research in ASD defined by apparently distinct
mechanistic hypotheses, that is, ASD as a disorder of neural
connectivity and specifically synaptic connectivity regulation (2,3)
and ASD as a disorder of immunological signaling (4–6).
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SEE COMMENTAR
First, some framing is required regarding the task being
addressed: diagnosis of the disorder. Here, diagnosis of ASD
will be defined in the probabilistic framework used in decision
making: the probability of a disease, D, given the findings
F summarized by the notation p(D|F). In ASD, we often attempt
to diagnose or rule out a single disease (i.e., autism), even
though it is recognized that there are likely to be multiple
diseases (i.e., the set of diseases D composed of {D1....Dn}
that together constitute ASD). A diagnosis will be more useful
to the extent that p(D|F) is high (i.e., close to 1.0) correspond-
ing to the high likelihood of disease or low (i.e., close to 0.0)
corresponding to the low likelihood of disease. Further con-
fidence in this likelihood estimate is provided if the error of this
estimate is low. The appropriateness of therapy can then be
determined by how well it is matched to the disease. This
thereby highlights the value of determining which of the
diseases that constitute ASD of the set {D1....Dn} have the
highest probability as each therapy will have different efficacy
for each of them.

PUBLISHED LITERATURE FOR LARGE-SCALE
CHARACTERIZATION OF RESEARCH

In the recently published DSM-5, ASD is defined as inclu-
ding persistent deficits in social communication and social
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Figure 1. Illustration of the incomplete overlap in research of ASD
genetics based on investigations of synapses and research in ASD genetics
based on investigations of the immune system. Values indicate number of
publications in that category. Four ellipses are shown corresponding to four
corpora all selected from PubMed Central. ASD, autism spectrum disorder;
I, publications focused on genetics and immune system; I cit., publications
cited in I; N, publications focused on genetics and synapses; N cit.,
publications cited in N (the intersection between N and I accounts for only
4% of the combined publications, and the intersection between N cit. and I
cit. accounts for only 8% of the combined citations).
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interaction and restricted, repetitive patterns of behavior,
interests, or activities. This new single disorder replaces
several previously defined disorders including autistic disor-
der, Asperger’s disorder, and pervasive developmental disor-
der not otherwise specified. This redefinition will surely lead to
a change in diagnosis for many individuals and possibly a
change in funding of support services. The controversy that
emerged prior to and after this publication illustrates the
challenge posed by the diagnostic and prognostic tasks when
applied to a disease complex that many recognize to be a
constellation of heterogeneous pathophysiologies (5,7–12),
some of which have genetic causes and some environmental
or a combination thereof. A multidimensional characterization
of the patient population of interest, which measures the
multiple genetic, molecular, clinical, and environmental expo-
sure features of each patient to derive the overall landscape of
the constellation of heterogeneous diseases that distinguish
that population, provides the most comprehensive and sys-
tematic viewpoint (13). Of course, such integrative data sets
are currently far and few between, with the Simon’s Simplex
Collection (14) constituting a notable example of what such
integration can yield (and the effort and investments required
to bring it together). With the steady accretion of clinical and
research data sets, we can anticipate such multidimensional
assessment to grow. Therefore, it will become essential to
determine which of the set of diseases comprising ASD in
{D1....Dn} are being diagnostically evaluated. Merely making
this determination of which diseases are being considered as
part of the ASD set is challenging. This challenge is best
illustrated by a large-scale database available to all ASD
researchers: that of the published literature. If we focus on
those recent publications that were supported by the U.S.
National Institutes of Health (NIH) and therefore deposited in
the PubMed Central Open Access Subset repository (15),
then, as illustrated in Figure 1, not only is the primary literature
balkanized, but even the citations made by the authors of this
literature largely address disparate domains of biology. If we
label the autism and genetics literature as pertaining non-
exclusively to four sets: neuronal synaptic function (N) and
immunological function/disorders (I), with N cit. and I cit.
denoting the literature cited by these first two sets, then as
shown in Figure 1, the overlap is remarkably slight. For
example, of 290 publications in N, only 18 are also in I, and
of the 12,391 cited by the publications in N, only 1551 are
cited by I. At best, this suggests that either the set of findings
or the set of diseases considered in developing a precision
diagnosis of the ASDs is incomplete, depending on which
research community is addressed. This raises the question of
what population studies can reveal regarding this apparent
dichotomy. By way of example, large-scale population
genomics have revealed previously poorly defined or unsus-
pected subtypes of disease within breast cancer (16), non-
small-cell lung carcinomas (17), and leukemia (18). However
preceding the advent of genomics by more than a century,
physician-scientists have used observational studies to define
disease subtypes. Jean Martin Charcot, for example, system-
atically and comprehensively studied the patients in a large
neurological hospital in Paris and was thereby able to define
new and lasting disease entities out of a pool of previously
monolithic and broad neurological diagnoses (19). A century
60 Biological Psychiatry January, 2015; 77:59–65 www.sobp.org/journ
and a half after Charcot, can we undertake large-scale
observational studies of patients enabled by the recent accel-
eration in electronic health record systems deployment to
augment our ability to generate an integrated view of p(D|F)
for ASD?

ELECTRONIC HEALTH RECORDS FOR LARGE-
SCALE CHARACTERIZATIONS

Acceleration of the adoption of electronic health records (EHR)
in clinical care through the HITECH Act of 2009 (20) may or
may not increase the productivity or safety of healthcare
delivery, but it certainly has provided a large source of detailed
clinical documentation of patients. This enables researchers
adept in the “secondary use” of EHR data to identify patients
with the clinical phenotype of interest and then use the
samples acquired in subsequent visits for clinical diagnostics
for the purposes of genotyping and resequencing and even
epigenetic characterization [reviewed in (21,22)]. In addition to
structured or codified data (e.g., laboratory test, medications,
and diagnostic and procedure billing codes), the development
of “natural language processing” (NLP) techniques (23–27)
enables the narrative text of clinical notes to be mined for a far
more accurate phenotypic assessment of the patients than
from codified data. Given that codified billing data are well
known to be biased for reimbursement and insufficiently fine
grained, this is not surprising. However, when codified data
are combined with NLP-derived data, the phenotyping accu-
racy is higher than with either clinical source alone (22).
Furthermore, this automated phenotyping has been shown
to be generalizable, portable, and reproducible across health-
care systems (28,29). These very encouraging early studies
al
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should not obscure the methodological challenges that these
observational data sets entail. The time span covered by most
EHRs is short in most systems because of their recent
adoption (30). NLP techniques currently require effortful fine
tuning based on iterative comparison of their performance
selecting the “right” patients relative to that of experts
manually reviewing a subset of the same records. Moreover,
whereas claims data may be biased for reimbursement, they
do cover populations through the entirety of their paid health
encounters, whereas electronic healthcare data may have
greater detail but often pertain only to a fraction of these
encounters (31). For example, an academic center’s EHR may
include documentation of the initial ASD diagnosis and sub-
sequent episodes of acute morbidity. However, they often lack
the documentation of the growth and development of these
children noted in the community pediatric practices. All
these sources of bias and complexity suggest that the use
of these data requires at least as much care and multi-
disciplinary expertise (31) as genomic data analysis early in
the adoption of a new sequencing platform.

Importantly, at a time when genomic studies of neuro-
psychiatric disease require tens of thousands of subjects,
EHR-driven phenotyping coupled to the genomic character-
ization of discarded samples is 1 to 2 orders of magnitude
faster and less costly in identifying patients of interest than
conventional cohort study techniques (21). This EHR-driven
phenotyping has been performed successfully for several
neuropsychiatric phenotypes including major depressive dis-
order (32,33) and bipolar disorder (34), and several groups are
currently working on similar approaches to ASD. It remains
however, that even for diseases that are as common as 1 in
100, any single healthcare system may not have sufficient
numbers of patients to enable a statistically robust character-
ization of these diseases. This is even more problematic when
the disease is not monolithic but rather a constellation of many
rarer diseases, {D1...Dn}, of which they are composed. This
can be addressed by enabling queries that cross multiple
healthcare systems. For example, we have developed a
system, the Shared Health Information Network (SHRINE)
(35,36), which has been used, with appropriate governance,
oversight, and privacy protection measures, to issue real-time
queries across multiple healthcare sites consisting of records
of millions of patients to both identify rare events (14) and
enable phenotyping for neuropsychiatric genomic studies to
occur at the scale of hundreds of thousands of individuals.
SHRINE has been adopted for Harvard-affiliated hospitals
(consisting of 6 million patients and 10 billion facts) and the
University of California for its Univerisity of California Research
exchange system (37), covering over 11 million patients.

In this context, a recent use of SHRINE to study the
comorbidity landscape of ASD presages future large EHR
system studies of neuropsychiatric diseases. This study, one
of the largest to date, covered over 14,000 patients with ASD
over a 15-year period (38), representing at least .5% of the
hospital populations. Many of the comorbidities fall squarely
into categories that are commonly thought of as related to
neuronal and synaptic function, including increased seizure
frequency (19.44%) and increased sleep disorders (1.12%),
bowel disorders, excluding inflammatory bowel disease (IBD;
11.74%), and schizophrenia (2.4% increasing to 8.76% after
Biologic
age 18). All these prevalence rates were highly and signifi-
cantly (often an order of magnitude) higher than either those
for the general population or even for use-matched hospital
populations. Conversely, several diseases that were anecdo-
tally reported to include increased frequency of ASD were
confirmed as such, including muscular dystrophy with 5%
ASD prevalence. With regard to the aforementioned divide
between immunological and synaptic studies, several dis-
eases with an autoimmune component were identified with
much higher prevalence than that in both the general pop-
ulation and the matched hospital populations: type 1 diabetes
mellitus (DM; .67% rising to 2.08% after age 18) and IBD
(.68% rising to 1.99% after age 18). There previously have
been many case reports about these comorbidities, but the
absence of a systematic population view has made it under-
standably easy to treat their biological import with some
hesitation. Moreover, because a single developmental medi-
cine specialist seeing 1000s of patients with ASD is unlikely to
see more than 10 patients with IBD or type 1 DM, these claims
might not be consistent with their impression of their own
population. Understandably, this has led some to question the
validity of these EHR-based diagnoses. Detailed review sug-
gests that they are indeed valid. For example, in a comparison
of “gold standard” IBD diagnoses by expert gastroenterolo-
gists, the combination of natural language processing and
codified data from the electronic health record attained
specificities in the 95%–97% range (39).

The insight provided by a systematic population perspec-
tive is enhanced further by having longitudinal, if retrospective,
follow-up of these patients over 15 or more years (40). Just as
in the early expression microarray experiments (41), the
patients are hierarchically clustered together based on their
similar trajectories but instead of characterized by gene
expression, they are characterized by the comorbidities noted
at each six-month interval. As summarized by Figure 2 there
are at least 3 distinct clusters that are currently identifiable.
One cluster is highly enriched for seizures with a prevalence as
high as 80%. This is in contrast to the alternative hypothesis
which would be a homogenous random distribution of epi-
lepsy across the population with autism if the epileptogenesis
was due to a common cause across ASD. Another cluster
includes individuals with increased prevalence of ear infec-
tions, sinusitis, and multiple upper respiratory infections and
(not shown) IBD. A third cluster is characterized by multiple
neurobehavioral disorders such as attention deficit hyper-
activity disorder and anxiety and, at a lower frequency (not
shown), schizophrenia, the latter becoming much more prev-
alent in this population after age 18 (42).

The significance of these clusters here is that they repre-
sent two important consequences for diagnosis and progno-
sis. First, they are instances, albeit preliminary, of the distinct
pathophysiologies of children who all have the label of autism
but in fact appear to have very different diseases. That is, the
patients who are members of these clusters have clinical
manifestations that appear to belong to different underlying
diseases in the set {D1...Dn}, currently comprising ASD. For
example, cluster 3 appears much more as a neuropsychiatric
clinical manifestation, whereas cluster 2 appears more immu-
nologic or infection-related, but all of them share the mani-
festations of autism. These immune or infection-related
al Psychiatry January, 2015; 77:59–65 www.sobp.org/journal 61
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Figure 2. Trajectories of comorbidities characterizing three distinct
subclusters of ASD defined by electronic health record data. Shown in
red are the top three comorbidities from cluster 1, where seizures rise to a
prevalence of 80%. Shown in blue are the top three comorbidities from
cluster 2, with an early childhood peak of infections. Not shown (because it
was ranked lower) is the rise in IBD that continues to rise through
adolescence. Shown in green are the top three comorbidities in cluster 3,
which are characterized by anxiety and hyperkinetic activity. Not shown
(because it was ranked lower) is the rise in schizophrenia that accelerates
with onset of adolescence. ASD, autism spectrum disorder; Chlam,
chlamydia; CP, cerebral palsy; DD, developmental delay; IBD, inflammatory
bowel disease; Otitis m., Otitis media; PDD, pervasive developmental
disorder.
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causes are also supported by large epidemiological studies
such as those documenting increased ASD prevalence in
children whose parents have rheumatoid arthritis or type 1
DM (43) and increased ASD in pregnancies characterized by
high levels of C-reactive protein (44). Of course, these early
studies at the population level are encouraging, but follow-up
studies are required to determine whether these distinct
clusters correspond to the aforementioned mechanisms pre-
viously described in the literature. The trajectories shown are
also relevant in that they provide a chronological signature, so
for example, whereas some of the neuropsychiatric disorders
appear to increase with time, some of the immunological
disorders such as sinusitis and otitis media peak early in
childhood. Others, such as IBD, type 1 diabetes, and schiz-
ophrenia increase in prevalence with age. Another contribution
to diagnostic precision may be enabled by the identification of
these phenotypic subclusters. Genetic studies focused on
these subgroups rather than on the undifferentiated group of
patients that fall under the ASD rubric may provide greater
biological homogeneity and therefore have higher power to
find genetic contributions to risk.

EHR data sets are perhaps the fastest growing source of
observational clinical data, and therefore they will likely overlap
and complement the membership of other cohort studies such
as the Avon Longitudinal Study of Parents and Children (45).
This presents at least two opportunities: the validation and
calibration of findings in the EHR-derived populations against
62 Biological Psychiatry January, 2015; 77:59–65 www.sobp.org/journ
the more systematically acquired study cohorts (46) and
testing the generality of those cohort studies by comparing
them to geographically distant clinical populations from EHR-
equipped health systems.
HIGH-THROUGHPUT LARGE-SCALE DATA FOR
INTEGRATIVE CHARACTERIZATION

Genome-wide assessment of genetic variation (e.g., in exome
studies) and function (e.g., transcriptomic or epigenomic
measures) promise an unbiased perspective on disease
processes. The former captures the heritable component
whereas the latter integrates environmental and genetic influ-
ences. If these are unbiased then why does the literature
derived from them, as described above, appear to have such a
dichotomous nature? One argument is that the underlying
disorders discussed here, immunological versus synaptic/
neural-connectivity dysregulation, are inhomogenously split
across the environmental component and inherited compo-
nent. For example, it has been argued that the immunological
signature is environmentally mediated rather than inherited
(47). However, close analysis of the results of these high-
throughput data reveals other potential reasons.

First, there is a cognitive bias that results from the history
and context within which a gene’s function was discovered.
For example, many chemokines and other inflammatory
mediators thought to be characteristic of the immune system
have been now shown to be powerful and essential morph-
ogens in the normal development of the mammalian brain
(48,49), so much so, that it is likely that if they had been first
discovered by neuroscientists, they would be universally
called neurokines (50). Similar arguments apply to the
regulation of mTOR-mediated autophagy processes, which
might have been labeled synaptic pruning functions if first
discovered in the central nervous system (51). From this
perspective, many of the genes implicated in ASD have both
a synaptic or neuronal connectivity function and an immuno-
logical function. For example, of the genes implicated in
autism by the Simons Foundation (Table 1), 10% of them
overlap with those in the Gene Ontology (GO) categories
covering immunological function. Similarly, the genes in the T
receptor signaling pathway overlap with 21% of the genes in
the long-term potentiation pathway (one of the mechanisms
underlying synaptic plasticity), as do the genes in the GO
immune genes. From this perspective, the ASD immunolog-
ical and synaptic genetics research communities might be
much closer in their focus than is apparent from their
literature. It also implies that some of the inherited variation
could be as easily labeled immunological as it is labeled
synaptic/neuronal connectivity.

It should be acknowledged that in contrast to classical
Mendelian disorders, complex diseases such as ASD are
fertile ground for the cognitive biases outlined above. With
so many genes in common, with the phenotypic pleiomorphy
of ASD and with multiple non-central nervous system immu-
nological comorbidities (e.g., type 1 DM, IBD, rheumatoid
arthritis), there are plenty of opportunities for investigators
focused on a single system or single organ to observe
reflections of the same genetic dysregulation, but in their
tissue of interest. Likewise, the overlap is one possible
al
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Table 1. Overlap Between Sets of Genes Found To Be Implicated in Autism and Those in Immunological Regulation and LTP

Source(s) of Two Gene Sets Intersected Genes in the Intersection

Gene Ontology immune genes (http://bit.ly/KIcYOZ) and the Simons
Foundation autism gene database (https://gene.sfari.org)

ADA CD44 HLA-A C4B ITGA4 NOS2A PTGS2 IL1RAPL1 APC ITGB3 ITGB7
ADORA2A ALOX5AP HRAS ADRB2 NRP2 RPS6KA2 LAMB1 (�10% of SFARI
genes)

Gene Ontology immune genes (http://bit.ly/KIcYOZ) and KEGG LTP
(hsa:04720)

RAF1 PRKCA CREBBP MAP2K2 BRAF MAP2K1 RPS6KA2 MAPK3 MAPK1 HRAS
EP300 CAMK2A CAMK2G PRKACA ATF4 (�21% of KEGG LTP genes)

KEGG T-cell receptor signaling (hsa:04660) and KEGG LTP (hsa:04720) RAF1 PPP3R2 PPP3CC PPP3R1 MAP2K2 MAP2K1 NRAS CHP2 MAPK3 MAPK1
HRAS KRAS PPP3CB PPP3CA CHP (�21% of KEGG LTP genes)

hsa, Homo sapiens; KEGG, Kyoto Encyclopedia of Genes and Genomes; LTP, long-term potentiation.
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explanation of why peripheral blood RNA or protein expression
levels in ASD subjects differ from levels in non-ASD subjects
(52,53) and that the differences can be used to classify these
patients characterized by many of the same pathways iden-
tified in genomic studies (7,54).

The consequence of cognitive bias results in another kind
of bias: that of narrative bias. For example, in a study
summarizing thousands of findings in a whole-genome study,
there is inevitably a process by which the investigators will
choose which mechanisms/genes are highlighted in the limited
space available in their publication. In an important study of
copy number variants in ASD (55), for example, enrichment
was also found in major histocompatibility complex-class
I-related gene sets, as noted in the Supplementary Materials.
However, the investigators understandably chose to omit the
finding from their main text because it did not relate to the
other molecular themes they had chosen to focus on. In the
literature that then cites that article, this immunological
component rarely appears if at all. The narrative bias thereby
leads to another well-known phenomenon: citation bias (56).
Citation bias leads to the insular interpretation of findings that
focus on mechanisms that do not fit into that bias. For
example, previously early evidence of the familial clustering
of autoimmune disorders in families with ASD (57) and HLA-
DR4, association with ASD (58,59) is cited only by the
immunologically oriented literature in ASD.

The aforementioned balkanization of neuropsychiatric
investigations may be increasingly a phenomenon of the
past. Data sources such as the National Database for Autism
Research repository at National Institute of Mental Health
(60) and the Psychiatric Genomics Consortium (61) provide
investigators with the a set of integrative measurements
previously unavailable. These more comprehensive data
resources enable analyses across disorders (62–65), which
allows the common and distinguishing aspect of the spec-
trum of these disorders to be studied phenotypically and
causatively. This broader perspective is also reflected in
recent reviews (66–68) which bridge the gap illustrated in
Figure 1.
CONCLUSIONS

As in many other domains of human disease, neuropsychiatric
disorders are prone to the natural tendency to focus on
specific aspects that do not reflect the entirety of the
manifestation or mechanisms of these disorders. Here I have
illustrated how three large-scale data sources, the literature,
electronic health records, and high-throughput genome-scale
Biologic
measurements illustrate the extent and balkanization of the
study of neuropsychiatric disease, specifically in the case of
ASD. At the same time, these large-scale data sources
provide the means to attain a comprehensive perspective.
That is, by systematically analyzing large-scale data sources,
we can identify the molecular and clinical characteristics of
the disparate disorders {D1...Dn}, of which ASD serves as a
unifying if temporary label. In doing so, we enable selectivity
in our therapeutic trials and ultimately therapeutic decision
process.

The three large-scale data sources discussed are only the
most currently accessible of those relevant to ASD. There are
several others that are highly likely to be informative. Chief
among these are unbiased approaches to measuring human
environmental exposures (69–71) at the population level as
well as the broader instrumentation of behavioral/cognitive
performance (72), which is only glimpsed during formal clinical
evaluation. Such comprehensive environmental and behavioral
assessments are essential if we are to understand the large
proportion of the variance in the disorders that lies outside
their inherited predispositions, which in the case of ASD is at
least 30%–40%.
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